

Remote epitaxy of III-V solar cells via hydride vapor phase epitaxy

Dennice Roberts¹, Hyunseok Kim², Elisabeth McClure¹, Anna Braun¹, Kevin Schulte¹, Aaron Ptak¹, Jeehwan Kim², John Simon¹ ¹National Renewable Energy Laboratory ²Massachusetts Institute of Technology

Session EQ02.11: Epitaxy of Mixed Dimensional Structures IV dennice.roberts@nrel.gov

Advantages of III-V solar

- Record efficiencies
 - 29.1% single junction GaAs (one-sun)
 - 47.1% multijunction (concentrated)
- Thin, flexible, radiation hard robust in harsh environments

Advantages of III-V solar

- Record efficiencies
 - 29.1% single junction GaAs (one-sun)
 - 47.1% multijunction (concentrated)
- Thin, flexible, radiation hard robust in harsh environments

Major costs in III-V solar:

K.A. Horowitz, et al., NREL Technical Report NREL/TP-6A20-72103

Hydride vapor phase epitaxy (HVPE) growth

- Atmospheric pressure process
- Less expensive precursors than incumbent OMVPE growth method
- Higher precursor utilization
- Extremely fast growth rates up to 528 μm/h

McClure *et al* Appl. Phys. Lett. 116 (2020)

Combining HVPE growth and remote epitaxy

Remote epitaxy of GaAs on GaAs demonstrated by MOCVD

For more on 2D layer fabrication and optimization, check out talks by Jeehwan Kim and Hyunseok Kim in this session

Exfoliation of HVPE-grown GaAs layer

Substrate

SEM of top surface, pre-exfoliation

EBSD map, layer at wafer interface

Despite rough surface, exfoliation reveals that all nucleation proceeded along (001) face

Data and images courtesy of Hyunseok Kim

Nucleation of GaAs on amorphous carbon

Single crystal films oriented along (001) at temperatures between 575 and 700 °C

650 °C, V/III = 5, growth rate = 0.76 μm/min

Among coalesced films: film roughness has dependence on V/III, some dependence on GR

Planarizing film surfaces

Improve surface morphology and reduce roughness by introducing layer with high carrier flow and high GaCl generation

500 nm under N₂ + 3 μ m high flow layer under H₂

 $3 \,\mu m$ high flow layer under N₂

R_a = 15.2 nm

R_a = 10.6 nm

 $R_a = 2.2 \text{ nm}$

- Cell efficiency of 7.2% for all-HVPE grown cell
- Using MOCVD-grown buffer to offset carbon degradation, see cell with 12.3% efficiency
- After applying anti-reflective coating, cell efficiency is >19%!

Conclusions

Investigated conditions for remote epitaxy of GaAs on amorphous carbon layer via HVPE and show proof of exfoliation

Explored planarization conditions to improve film surface and morphology

Developed remote-epitaxial GaAs cell with promising path for substantial improvements

Thank you!

www.nrel.gov dennice.roberts@nrel.gov

NREL/PR-5K00-81669

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by DOE's Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Agreement No. 35365. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Large-scale deployment of III-V solar limited by cost

Cost breakdown for III-V cells by OMVPE

K.A. Horowitz, et al., NREL Technical Report NREL/TP-6A20-72103

Nucleation of GaAs on amorphous carbon

Island growth at very slow growth rates; coalesced films at higher GRs